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ABSTRACT: Real-time monitoring of food freshness is critical to
reducing food waste and pursuing sustainable development. Cross-
reactive artificial scent screening systems provide a promising
solution for food freshness monitoring, but their commercialization
is hindered by the low sensitivity or pattern-recognition inaccuracy.
Leveraging the cutting-edge artificial intelligence and high-porosity
nanomaterial, a cost-effective and versatile method was developed
by incorporating metal−organic frameworks into smart food
packaging via a colorimetric combinatorics sensor array. The
whole UiO-66 family was screened by density functional theory
calculations, and UiO-66-Br (due to the highest binding energy)
was selected to construct sensor arrays on an ice-templated
chitosan substrate (i.e., ice-templated dye@UiO-66-Br/Chitosan).
The physicochemical properties and morphologies of the fabricated sensor arrays were systematically characterized. The limit of
detection of 37.17, 25.90, and 40.65 ppm for ammonia, methylamine, and trimethylamine, respectively, was achieved by the prepared
composite film. Deep convolutional neural networks (DCNN), a deep learning algorithm family, were further applied to monitor
shrimp freshness by recognizing the scent fingerprint. Four state-of-the-art DCNN models were trained using 31,584 labeled images
and 13,537 images for testing. The highest accuracy achieved was up to 99.94% by the Wide-Slice Residual Network 50 (WISeR50).
Our newly developed platform is integrated, sensitive, and non-destructive, enabling consumers to monitor shrimp freshness in real-
time conveniently.
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■ INTRODUCTION

According to a recent report from the United States
Department of Agriculture (USDA) in 2018, approximately
15% of perishable food is wasted at retail stores due to damage
and spoilage, equaling $162 billion annually in the U.S.1

Particularly, seafood has the highest percentage of waste
compared to other food categories, with about 30% of the
seafood products being wasted. Typically, more than half of the
seafood waste or over 94 million pounds per year occurs at the
end of the value chain, largely due to the conservative
allocation of expiration dates on “sell by” tags.1,2 In stark
contrast to the arbitrary allocation of expiration dates, real-time
measurements on individual products are predicted to
effectively reduce the waste by 60%, which is worth $135
million per year in the U.S.3

As evidenced, there is a tremendous market value for
developing real-time food freshness monitoring devices.4

Recently, different approaches mimicking the mammalian
olfactory system have been developed for the detection of
explosives, drugs, and deleterious chemicals in foods.5−7 One
mainstream approach is artificial scent screening that requires

two critical components: cross-reactive sensing and fingerprint
pattern recognition.8 Conventionally, cross-reactive sensing is
achieved by integrating metal oxides9 or colorimetric dyes onto
sensor arrays.10 While those sensors could target different
molecules to generate a fingerprint pattern, they suffer from
low adsorption rates and poor selectivity for volatile aroma
compounds (VACs), resulting in poor accuracy and
sensitivity.4 In addition, the high complexity of the image-
based pattern recognition cannot be efficiently analyzed by
traditional statistical methods, e.g., discriminant analysis
(LDA), principal component analysis (PCA), and hierarchical
cluster analysis (HCA).11
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To address these challenges, we synergized artificial
intelligence (AI), i.e., deep learning and porous framework
nanomaterials in colorimetric sensor array systems. We
adopted metal−organic frameworks (MOFs) to enhance
sensitivity; due to the high-porosity structure with extremely
high surface to bulk ratio, they have been widely applied in gas
separation and storage, catalysis, biomolecule encapsulation,
and battery.12,13 Among different MOFs, we chose UiO-66
(named from the University of Oslo) for its high thermal,
water, chemical, and mechanical stability, all of which arise
from the high coordination number, strong bonds between
inorganic blocks and the linker, and strong Zr−O bonds.14

Furthermore, functional groups (such as −NO2, −NH2, −OH,
(COOH)2, −(CH3)2, and −Br) can be introduced into UiO-
66 to increase the gas detection sensitivity and selectivity.15 To
address the long-standing challenge in accurate image
recognition, we exploited the latest advances in AI and deep
learning.16 In particular, we employed the deep convolutional
neural network (DCNN) and its derivative algorithms, which
have found widespread success in the food field for dietary
monitoring,17 food quality detection,18 food supply chain
credit evaluation,19 and predicting morbidity of gastrointestinal
infections by food contamination.20

In this study, as shown in Figure 1, an ecofriendly sensor
system was developed on ice-templated dye-loaded monoliths
formed with chitosan, a low-cost biodegradable material, and
UiO-66 (Dye@chitosan/UiO-66 hereafter). The system was
designed and optimized with the help of the high-performance
computer (HPC) by DFT and Grand Canonical Monte Carlo
(GCMC) simulation. The adsorption ability of the sensor
system was then evaluated for selective VACs. Finally, a fully
supervised DCNN was trained using 31,584 labeled shrimp
images with the sensor array. The overall objective of this
study is to establish an MOF-based practical platform for real-
time monitoring of seafood freshness based on advanced
computer technology to effectively reduce food waste.

■ EXPERIMENTAL SECTION
Materials. Zirconium tetrachloride (99.5%), benzene-1,4-dicar-

boxylic acid (BDC, 98.0%), 2-2-bromoterephthalic acid (Br-BDC,
98.0%), N,N-dimethylformamide (DMF, 99.0%), Nile red, chitosan
(medium molecular weight), ammonia hydrogen solution (25% in
water), methylamine solution (33% in absolute ethanol), trimethyl-
amine solution (45% in water), acetic acid (HAc, 99.9%), boric acid,
(99.8%), 2-methoxyethanol (99%), and seven dyes were purchased
from Sigma-Aldrich (St. Louis, MO, USA, details of dyes are
presented in Table S1). All chemicals are in analytical grade. Jumbo
tiger prawns (Penaeus monodon) at a mass of 14−16 g per shrimp
were bought from Maine Ave Fish Market (Washington DC, USA). A
microwave container (38 oz) was purchased from a local market
(SafePro, MD, USA).
Computational Methods. Electronic structure calculations were

performed using supercells to study the effect of confinement on

molecular adsorption. The parent UiO-66 structure was taken from
Jasuja and Walton,21 and hydrogen(s) were replaced in the benzene
ring with the functional groups of interest.21 These calculations used a
1 × 1 × 1 supercell with lattice parameters of ∼14−15 Å in each
direction. The Vienna Ab Initio Simulation Package (VASP) was used
at the PBE-D293 level with a 400 eV kinetic energy cutoff and one Γ-
centered k-point. For structural optimization, the total energy and
ionic force convergence criteria were 1 × 10−4 eV and 3 × 10−2 eV/Å,
respectively. UiO-66 has a 3D cubic framework composed of
Zr6O4(OH)4 nodes linked with 1,4-benzenedicarboxylate linkers
(BDC). It has centric octahedral cages (11 Å) connected to eight
tetrahedral cages (8 Å) with triangular windows (6 Å).

Binding energies were defined in eq 1:

E E E Ebinding adsorption complex adsorbate adsorbent= − − (1)

where Ebinding, Eadsorption complex, Eadsorbate, and Eadsorbent were the
1binding energy, total energy of the adsorption complex, total energy
of the isolated adsorbate, and total energy of the isolated adsorbent,
respectively.

GCMC simulations were used to calculate different isotherms at
200 K for UiO-66 and UiO-66-Br. At each pressure, the parameter of
the equilibration step at 10,000,000 was set as a computer ensemble
average. The framework atom was taken from the Universal Force
Field (UFF). A charge of −0.482 was placed on the N nuclei and
+0.964 at the center of mass. The Ewald and Group summation
method was used for all interactions with atom-based van der Waals.
All calculations mentioned above were based on a sorption isotherm
module in Materials Studio (BIOVIA, v 5.51). The parameters
mentioned above were taken from a previous study with some
modifications.22

Preparation of UiO-66 and UiO-66-Br. UiO-66-Br was
synthesized by a solvothermal method according to a previous report
with minor modification.23 First, ZrCl4 (1.17 g, 5 mmol) and Br-BDC
(1.23 g, 5 mmol) or benzene-1,4-dicarboxylic acid (0.83 g, 5 mmol)
and acetic acid (1.0 mL) were dissolved in DMF (30 mL) at room
temperature. Then, the mixture was placed in a Teflon-lined stainless-
steel autoclave after adding 2 mL of deionized water and mixing
completely. The autoclave was placed in an oil bath at 121 °C for 24
h. Afterward, the solution was cooled to room temperature for 30
min, and the resulting UiO-66 and UiO-66-Br particles were
separated via centrifugation (12,096g, 10 min) at room temperature
and washed three times with ethanol. The resulting white powder was
dried in an oven at 40 °C for 4 h and tested by XRD and SEM for
verification (Figure S1).

Ice-Templated Dye@Chitosan/UiO-66 Monoliths. In detail,
2.5 mL of chitosan solution (5 mg/mL, 2% HAc), 2.5 mL of UiO-66
/ UiO-66-Br solution (5 mg/mL, 2% HAc), and 0.4 mL of dye
solution (5 mg/mL in 2-methoxyethanol) were added in a bottle. The
formulas for all dyes are presented in Table S1. After vigorous stirring,
0.2 mL of each solution was transferred to its assigned well on a 96-
well plate, with a diameter of 6 mm for each pore. After carefully
sealing the plate with a cap, the plate containing the solution was
slowly immersed into a bath of liquid nitrogen for 5 min. The frozen
sample was freeze-dried for approximately 48 h to form dry chitosan/
UiO-66 monoliths. The monoliths of two types of UiO-66 particles
were denoted as Chitosan/UiO-66 and Chitosan/UiO-66-Br. For the
control, 2.5 wt % chitosan solution without UiO-66 or Uio-66-Br was

Figure 1. Fabrication of ice-templated colorimetric sensor array with the DCNN.
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freeze-dried following the same procedure, and the acquired monolith
was denoted as Chitosan. All monoliths with different dyes were
adhered on a paper tape in the order of color in Table S1 to form the
sensor array.
Calculation of Amine Gas Concentration. Detection experi-

ments on amine gases were performed in standard Petri dishes (100 ×
15 mm) with the temperature controlled at 20 °C. The colorimetric
sensor array was passed on the cap of the Petri dishes. The required
gas concentration was reached by injecting a certain volume of liquid
analyte into the dish and sealed with Parafilm (i.e., ammonia (NH3),
methylamine (MA), and trimethylamine (TMA)). The resulting gas
concentration (Cppm) was calculated using the following equation (eq
2):

C
V D W

M V
22.4 10ppm

L mg L

g mol L

7/

/
=

× ×
×

× ×μ

(2)

where VμL is the liquid analyte volume, Dmg/L is the liquid density, W
is the mass fraction of the liquid, Mg/mol is the molecular weight of the
liquid analyte, and VL is the volume of Petri dishes.

■ MATERIAL CHARACTERIZATION
Fourier-Transform Infrared (FT-IR) Spectrometry. The

samples (ice-templated UiO-66/chitosan and UiO-66-Br/
Chitosan, 3−5 mg) were mounted onto a Jasco FT-IR 4100
spectrometer (Jasco Inc., Easton, MD, USA) coupled with an
attenuated total reflectance (ATR) accessory. The infrared
transmittance was acquired at the wavenumbers from 600 to
4000 cm−1 with a resolution of 2 cm−1. Sixty-four repeated
scans were undertaken for each sample. The spectra were
averaged, smoothed, corrected for their baselines, and
converted to absorbance with Spectra Manager software
(Jasco Inc., Easton, MD, USA).24

Morphology Analysis. Samples were scooped into a 10
mm cup and placed into a shuttle, which was frozen
conductively in a Styrofoam box, by placing the brass plates
on the surface of a pre-cooled (−196 °C) brass bar whose
lower half was submerged in liquid nitrogen. After 20−30 s, the
shuttle containing the frozen sample was transferred to a
Quorum PP2000 cryo-preparation chamber (Quorum Tech-
nologies, East Sussex, UK). The top layer of the frozen sample
was cryo-fractured using a metal blade mounted inside the
preparation chamber. All specimens were etched inside the
cryo-preparation system to remove any surface contamination
(condensed water vapor) by raising the temperature of the
stage to −90 °C for 10−15 min. Following the etching, the
temperature inside the chamber was lowered below −130 °C,
and the specimens were coated with a 10 nm layer of platinum
using a magnetron sputter head equipped with a platinum
target inside the cryo-preparation chamber. The specimens
were transferred to a pre-cooled (−130 °C) cryo stage in the
scanning electron microscope (SEM) (Tescan XEIA FEG
SEM, Brno, Czechia) for observation. An accelerating voltage
of 5 kV was used to view the specimens. Images were captured
using a 4pi Analysis System (Durham, NC).
Total Volatile Basic Nitrogen (TVB-N) Measurement.

To mimic the storage conditions at supermarkets, 150 ± 10 g
of fresh shrimps without any pretreatment was placed in a
plastic box. One sensor array per package was attached to the
inner side of the bag. Shrimps were stored at 4 °C before
analysis.
To test the freshness of shrimps without the interference of

image collection, a separate group of 24 (8 storage intervals ×
3 parallel experiments) packages of shrimps was prepared for
TVB-N testing. Ten grams of minced shrimp sample with shell

was homogenized with 100 mL of distilled water (Ultra-Turrax
T25, IKA, Staufen, Germany). The mixture was filtered for 30
min later to obtain a liquid sample. Then, 3 mL of boric acid
absorbing solution (20 g/L) and 50 μL of pH indicator
(methyl red:bromocresol green = 1:5, v/v) were added to the
inner chamber of the Conway dish (diameter: 90 mm). In the
outer chamber, 3 mL of potassium carbonate-saturated
solution and 1 mL of sample liquid were added in sequence.
The Conway dish was kept sealed and incubated at 37 °C for 2
h. The volatile amine gases were absorbed by boric acid as an
absorbing solution. The abovementioned mixture was then
titrated using 0.1 mol/L hydrochloric acid (HCl), and the
amount of volatile amines was calculated with the following
equation:

X
v v C

m
( 1 2) 14

0.05
100= − × ×

×
×

(3)

where X is the TVB-N content in the sample (mg/100 g), v1 is
the volume of 0.1 mol/L HCl used for the actual test (mL), v2
is the volume of 0.1 mol/L HCl used for the control test (mL),
C is the HCl concentration (mol/L), 14 is the weight of
nitrogen, and m is the weight of the sample (g).

■ MACHINE LEARNING

Circular Region of Interest (ROI) Identification. Hough
circle transform was applied to recognize the color area of the
sensor array. The circled candidates were produced by “voting”
in the Hough parameter space and then selecting glocal
maxima in an accumulator matrix. To obtain the best result,
the inverse ratio of the resolution was set to 1, the upper
threshold for the internal Canny edge detector was set to 10,
the threshold for center detection was set to 9, and the range of
radius to be detected was (20, 60) pixel. The ROI was
extracted from the seven dye region labeled by the Hough
circle transform.25

Database Preparation and Image Collection for
DCNN Training. To collect data from the sensor, 10 s of a
short video for each box was taken with shrimps at a certain
storage interval. During the 10 s, the color and intensity of the
background light in the photo box changed according to the
program settings. Eight intervals that covered the spoilage
process were selected. During the data collecting period, a
portion of shrimp was examined for TVB-N, and others were
used for image acquisition. Note that we changed the light that
was included in the input images and photographed them with
iPhone 11 Max Pro for training to fully mimic real testing
scenarios. The 60 fps video was then randomly sampled at 30
fps and exported as an image set. Based on the actual measured
TVB-N results and shrimp freshness criteria, we labeled
samples with <30 mg N/100 g as fresh and >30 mg N/100 g as
spoiled. Then, the final database was split into a training set
and a testing set at the ratio 7:3. The final training set
contained 31,584 labeled images, and the test set contained
13,537 images. The fresh-to-spoiled ratio was 1:1 in both
training set and test set.

Network Architecture. With the acquired database, the
DCNN was employed to train a food classification system.
This system took images as input and classified them into two
categories, i.e., Fresh and Spoiled. Four different DCNN
architectures were compared for their effectiveness on
classifying our novel food dataset: VGG,26 ResNet-50,27

Wide ResNet-50,28 and Inception V3.29 These four CNN
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architectures were pre-trained by the most commonly used and
challenging image classification dataset. All experiments in this
study were conducted on Windows Servers with Nvidia
Quadro RTX 3000 GPUs. During the training and testing, the
images were resized to 224 × 224 as inputs. The learning rate
was set to 0.1 at the beginning of training and reduced to 0.05
and 0.01 when the test accuracy exceeded 70 and 80%,
respectively. The momentum and weight decay were set to 0.9
and 0.0001, respectively.

■ RESULTS AND DISCUSSION

Identification of Materials for Selective Adsorption.
During the storage, proteins in rotting shrimps are microbially
decomposed into peptides and amino acids.18 Over time, these
components are further degraded into amines and ammonia,
which will cause the color change of the sensor array.4,5 Four
amine gases (i.e., NH3, MA, TMA, and putrescine (PUT))
typically generated during shrimp storage were simulated.
A previous research found that UiO-66-(COOH)2 had a

high CO2 working capacity,30 UiO-66-NH2 was identified as
the most promising material for vacuum swing adsorption,31

and UiO-66-(CH3)2 diminished water adsorption by ∼50%
compared with bare UiO-66.21 However, due to the abundance
of benzene ring modifications, the selection of appropriate
functionalized materials for particular applications from
overwhelming functional groups motivated the utilization of
the computer method. Indeed, quantum chemistry calcu-

lations, especially density functional theory (DFT), were
performed using clusters chosen to examine a wide range of
functional groups for selective adsorption of ammonia.32

Although methods to develop accurate force fields for
molecular adsorption in MOFs from electronic structure
calculations have developed rapidly in recent years, they still
require extensive calculations for each specific adsorbent of
interest. Here, we focus on using results from electronic
structure calculations and identify the best choice of functional
UiO-66 for selective VAC adsorption.
The binding energies for the aforementioned four amine

gases were calculated for the [−NH3
+, −OH, −Cl, −NO2,

−NH2, −Br]-functionalized and unfunctionalized UiO-66
MOFs using DFT with PBE-D2 functions. Figure 2a compares
the binding energy for four amine gases in functionalized UiO-
66 materials. The PBE-D2 calculation is a useful quantification
to consider situations with a low bulk phase concentration of
adsorbing species.15 Since our calculations have focused on
individual binding sites for adsorbed molecules and the
concentration of absorbed molecules was low in the food
package, PBE-D2 was selected. It should be noted that this
heuristic approach neglects possible synergistic effects between
co-adsorbed species. The combination color close to red in the
figure represents the strongest preferential binding energy.
Among selected groups, −Br-functionalized UiO-66 MOFs
showed the strongest preferential affinity for the three types of
amine gases (i.e., NH3, MA, and TMA), whereas unfunction-

Figure 2. (a) Heat map of relative binding energy for four selected amine gases in functionalized UiO-66 materials determined from periodic PBE-
D2 calculations. (b) Material Studio simulation indicates the COM probability distribution of the adsorbed NH3 on the UiO-66-Br crystal.

Figure 3. (a) Photographed images of color changes of Dye@UiO-66-Br/Chitosan sensor arrays exposed to NH3, MA, and TMA as gas
concentration increased from 20 to 320 ppm. (b) Photographed images of color changes of Dye@UiO-66/Chitosan and Dye@Chitosan sensor
arrays exposed to NH3.
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alized UiO-66 showed the least. For example, UiO-66-Br binds
MA (84.14 kJ/mol) more strongly than UiO-66-OH (77.42
kJ/mol) and the lowest bare UiO-66 (38.4 kJ/mol). Although
calculated binding energies and experimental heat of
adsorption are not precisely the same, they can be used to
qualitatively screen and rank the binding affinity for the UiO-
66 family.

Figure 2b illustrates the structure of UiO-66-Br with
absorbed NH3 molecules. The distribution of red dots
represents the center of mass (COM), which indicates that
amino gas molecules are more preferentially being adsorbed
onto the BDC ligand sites than Lewis acid sites of Zr6 nodes.
According to the GCMC simulation result, the BDC ligand
with the functionalized group was identified as the preferential

Figure 4. Boxplot of the ED distribution of different dyes based on UiO-66-Br/Chitosan for NH3, MA, and TMA at different gas concentrations
(from 20 to 320 ppm, n = 10).
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adsorption site for amino gas. In addition, the adsorption
enthalpy −ΔH° (i.e., isosteric heat) of water molecules on
UiO-66-Br is calculated as 11.7 kJ/mol, which is much smaller
than 84.14 kJ/mol for MA molecules and 67.4 kJ/mol for NH3.
From the thermodynamic aspect, amino gas molecules can
replace pre-adsorbed water molecules on the UiO-66-Br
material.33 Hence, the moisture in the real atmosphere has a
negligible impact on VAC sensing. Based on results of the
above simulations, UiO-66-Br was selected as the candidate
material for colorimetric sensor array preparation. In addition,
to verify the simulation results, unfunctionalized UiO-66 was
included as a control for the following experiments.
Sensor Array Validation on Response to VAC Stand-

ards. Because the sensor array was prepared on a paper base, it
is cheap and can be integrated easily with existing package
materials. To assess the ability of the colorimetric sensor array
to be used as an indicator for VACs, the response of the Dye@
UiO-66-Br/Chitosan sensor array to multiple gases, i.e., NH3,
MA, and TMA, was tested. The color changes of the array are
dependent upon the concentration of selected gases, which
provides a direct method for quantitative analysis.6 Figure 3a
shows the color changes of Dye@UiO-66-Br/Chitosan sensor
arrays, which were treated with different concentrations of
NH3, MA, and TMA (photo by iPhone 11 Pro Max). All
sensor arrays showed different color changes with these gases
at concentrations ranging from 0 to 320 ppm. This is similar to
mammalian olfactory receptors, where one scent molecule can
bind to different receptors and one type of gas can trigger
several sensors’ color changes within the array. Meanwhile, the
sensor array that responded to each gas formed a colorful
fingerprint.
To describe the color distribution of the sensor, a color

extraction and area recognition system based on the Hough
circle transform was applied. The circled candidates are
produced by “voting” in the Hough parameter space and
then selecting glocal maxima in an accumulator matrix. The
ROI was extracted from the seven dye region labeled by the
Hough circle transform (see in Figure 3a). Then, 100 pixels
were randomly generated from the ROI, and each variance of
color components (red, green, and blue, RGB) of pixel was
computed. According to previous reports, the variance is an
important descriptor of the distribution of values, where lower
values refer to a more even dye distribution and vice versa.34

To achieve the quantitative analysis of color changes, the

Euclidean distance (ED), an important value for the evaluation
of color, was calculated by the RGB distance between selected
concentrations and a blank.7 As shown in Figure 4, ED values
were overlapped under 40 ppm for seven dyes. As the gas
concentration increased, some dyes such as MR showed
increased ED, whereas others still showed insignificant changes
(e.g., CPR, n = 10, p < 0.05). Meanwhile, ED values of the
sensor array quantitatively followed the trends of the gas
concentration. Corresponding to the previous report, higher
concentrations of three types of amine gases (i.e., NH3, MA,
and TMA) displayed higher ED values but still some
combinations did not show significant change (e.g., MA/BPB
and NH2/CPR).

5−7

The limits of detection (LODs) of three amine gases are
obtained at a signal-to-noise ratio of 3 following eqs 4 and 5:
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where S is defined as the difference between the blank control
(Control) and exposed groups (analyte) and n represents 10
independent experiments. The estimated LODs for NH3, MA,
and TMA were 37.17, 25.90, and 40.65 ppm, respectively. This
result demonstrated that our sensor array had an adequate
LOD (less than 35 ppm) for shrimp freshness detection in the
food package. In addition, the ED values for each sensor before
and after exposure to the same amount of gas were different.
For example, after exposure to 320 ppm NH3, MA, and TMA,
the ED values for the MR sensor were 46.26, 53.13, and 39.13,
respectively. This can be explained by the VASP simulation
that the number of methyl groups in these three amine gases
would impact the binding energy of the adsorption complex.
Different chemical environments and the number of amino
(−NH2) groups in these selected amine gases would induce
different color combinations in the sensor array. Meanwhile,
this result was consistent with the observation from naked
eyes. To further verify the computer simulation results, UiO-
66/Chitosan and chitosan monolithic colorimetric sensor

Figure 5. (a) Clusters of three sensor array systems: Dye@UiO-66-Br/Chitosan (red), Dye@UiO-66/Chitosan (blue), and Dye@chitosan
(yellow) via a 2D PCA score plot. The color shade of the dot represents the concentration of ammonia gas concentration. The two dimensions
plotted only encompass 44.73% of the total variance. (b) PCA score plot, the number of eigenvectors (i.e., principal components) needed to reach
cumulative percentage (i.e., total variance). (c) Cluster tree produced by hierarchical cluster analysis showed that three colorimetric sensor array
systems can be distinguished as being treated by different ammonia gas concentrations.
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arrays (i.e., Dye@UiO-66/Chitosan and Dye@Chitosan) were
prepared for comparison. As shown in Figure 3b, two clear
trends in color differences can be observed. First, all sensor
arrays were affected by individual ammonia gas concentrations.
Second, when observed by the naked eye, the colors of UiO-
66-Br/Chitosan (see in Figure 3a, NH3) and UiO-66/Chitosan
were different from the Chitosan array. Meanwhile, adding
UiO-66 or UiO-66-Br MOF particles led to the increasing
turbidity of the system before freeze-drying in a preliminary
research and also showed overall color change of the sensor
array. Moreover, to all sensor arrays, the dyes spread uniformly
and were distributed evenly. To quantitatively analyze the
results, two traditional machine learning models (i.e., PCA and
HCA) were used.
PCA is a widely used classification method.35 Being

evaluated by PCA, a 360 × 21 (20 duplicates × 6 gas
concentration × 3 sensors arrays ×21 RGB values) dimen-
sional matrix was acquired from the colorimetric sensor array.
The PCA clustering result is shown in Figure 5a. PCA created
several independent principal components (PCs) that
maximally represent the whole matrix. According to the PCA

score plot (Figure 5b), five PCs were needed to reach 80% of
the total variance, and eight PCs were needed to reach 90% of
the total variance. Here, due to the difficulties of drawing a
high-dimensional plot, PCA clustering with two PCs (2D PCA
score) was plotted, which represented 44.73% of the total
variance. Two clear points can be concluded. First, the UiO-
66-Br/Chitosan sensor array (red dots in Figure 5a) showed
four cluster groups in the plot, and three high gas
concentration groups were clearly distinguished between
each other. For the UiO-66/Chitosan sensor array (blue
dots), only two high gas concentration groups could be
successfully separated, and only one group could be roughly
classified for the chitosan sensor array (without UiO-66
particle, yellow dots). This could be explained by the VASP
simulation results that different binding energies would induce
different color combinations in the sensor array, which verified
the hypothesis that the UiO-66-Br/Chitosan sensor array
showed the best sensitivity. In addition, as the gas
concentration increased, sensor arrays with different initial
colors moved toward the same endpoint region (upper left area
in Figure 5a). The possible reason was that the direction of dye

Table 1. Comparison of Concentration and Equilibrium Time between Three Colorimetric Sensor Arrays

standard deviation

sensor array range of concentration (ppm) equilibrium time (s) red green blue

UiO-66-Br/Chitosan ∼80 420 0.09 0.04 0.10
UiO-66/Chitosan ∼160 550 0.16 0.10 0.18
Chitosan ∼320 720 0.18 0.13 0.22

Figure 6. (a) SEM image of ice-templated methyl red@UiO-66-Br/Chitosan monolith with EDS result (left) and UiO-66-Br nanoparticles (right).
(b) Infrared spectra of UiO-66 and UiO-66-Br nanoparticles (left). Infrared spectra of chitosan monoliths and UiO-66-Br/Chitosan monoliths
(right).
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color change was the same in different sensors, so the color
change endpoints were similar. Also, the PCA score showed
that below 10 PCs, the variance increased with PCs and
reached a platform after 15 PCs. This result could be explained
by the over-adequate number of dye. For the ammonia gas
response, the combination of multiple sensors improves the
accuracy of the analysis, but there are some sensors in the array
not involved. With HCA, Ward’s minimum variance method
was applied to determine gas-induced variations of the 21-
dimensional RGB colorimetric sensor array (Figure 5c). The
cluster tree showed that the three sensor arrays were clearly
separated from each other. In addition, UiO-66-Br/Chitosan
showed the highest ED value among different gas concen-
tration groups. The results from PCA and HCA clustering
intuitively revealed that the UiO-66-Br/Chitosan sensor array
effectively discriminated NH3 based on a cross-reactive
colorimetric mechanism. Meanwhile, HCA results further
confirmed that UiO-66-Br/Chitosan showed a better sensi-
tivity when compared to the other two sensor arrays. Together,
these results demonstrate that it is highly possible to use our
colorimetric barcode to monitor shrimp freshness and other
microbial metabolic processes in food storage.
Another comparison of the results between three types of

colorimetric sensor arrays is shown in Table 1. To study the
stability of sensor arrays, the variation in color shade was
evaluated. At each concentration of NH3, colorimetric sensor
arrays were repeated 10 times and the color standard deviation
after exposure to 40 ppm NH3 was compared. A lower
standard deviation indicates a more precise measurement and
better stability. The result was consistent with the computer
simulation analysis that the UiO-66-Br/Chitosan system
showed the best accuracy when compared to bare UiO-66
and chitosan monoliths. In addition, the UiO-66-Br/Chitosan
system showed the shortest equilibrium time, which could also
be explained by the lower bonding energy simulated by VASP.
Characterization of Sensor Arrays. The UiO-66-Br/

Chitosan system has fine fibers and sheet structure with voids
(Figure 6a). SEM images revealed that MOF particles were
trapped in the chitosan network after freeze-drying. The
interspersed voids in the interwoven chitosan ribbons allow the
impregnation of dye molecules. SEM of the MR-loaded sensor
system revealed that UiO-66-Br penetrated through the voids
during rehydration of padded dry sensor monoliths and got
physically trapped in the fiber network. The morphology and
size of UiO-66-Br particles were also determined using the
SEM. The average diameter was in the range 132−163 nm,
and most of the particles had clearly geometric boundaries. In
addition, the EDS elemental analysis was carried out. The
result confirmed that the particles trapped in the network were
UiO-66-Br particles, which were composed mainly of carbon,
oxygen, bromine, and zirconium, which was in accordance with
the previously reported data.23,36 The physicochemical
characteristic of UiO-66-Br particles is shown showed in the
Supporting Information (Table S2).
Figure 6b shows the infrared spectrum in the region of the

skeletal mode of the samples. At lower frequencies, peaks due
to O−H and C−H bending were mixed with the Zr−O peak
(main bands at 746 cm−1). In Zr−O2 (Figure 6b, left), a twin
peak at 725 and 620 cm−1 has been assigned to longitudinal
and transverse peaks, respectively. Strong changes occurred
between UiO-66 and UiO-66-Br due to the band associated
with DMF (1667 cm−1) and C−Br (668 cm−1). The unique
peaks of chitosan were observed at 3410 (νO−H), 1413 (δN−H),

1623 (νCO), and 1088 cm−1 (νC−N). After mixing UiO-66-Br
with chitosan, the typical peaks of chitosan and MOF particles
were all observed in the UiO-66-Br/Chitosan spectra,
indicating that UiO-66-Br particles were successfully incorpo-
rated onto the chitosan via the adsorption process. In this
study, UiO-66-Br was placed in chitosan dispersion until
equilibrium was reached. According to a previous report, this
mechanistic process often followed three consecutive steps:
diffusion, attachment, and rearrangement/relaxation. Finally,
the UiO-66-Br nanoparticle and chitosan chain formed a stable
ice-templated macropores monolith system.23,36

Deep Learning-Enabled Freshness Recognition. For
proof-of-concept purposes, we applied the newly developed
sensor array to monitor the freshness of shrimp. To
demonstrate the superiority of accuracy, the ED value method
was applied and compared with deep learning models.
Meanwhile, to obtain the best results, four state-of-the-art
DCNN models were involved simultaneously, VGG, Inception
V3, WISsR, and Resnet-50. The sensor arrays were glued to
the bottom of lunch boxes without touching shrimp samples
(Figure 7a).

The shrimps were sealed in lunch boxes and stored at 4 °C.
Images of the sensor arrays were taken at different time
intervals by an iPhone 11 Max. According to a previous report,
shrimps with TVB-N values less than 30 mg/100 g were
considered fresh, whereas higher than 30 mg/100 g indicated
being inedible and spoiled. To classify the sensor array into
these two categories of freshness, the TVB-N value of the
shrimp was tested by the Conway method. Then, images were
labeled as fresh and spoiled according to this standard. The
overall pattern changes in reference measurements of TVB-N
contents during a period of 168 h cold storage period are
illustrated in Figure S2.
A total of 45,121 images of shrimp and sensor array were

obtained and formed a dataset for machine learning evaluation

Figure 7. (a) Shrimp with a sensor array image database structure.
The database contained 31,584 images for model training and 13,537
images for testing labeled with reference TVB-N results. (b) The
DCNN models were used for shrimp freshness classification.
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of shrimp freshness. As mentioned in the Experimental
Section, the dataset was first randomly split into a training
subset and a testing subset with a ratio of 7:3, which means
31,584 images for model training and 13,537 images for
testing. A true/false image classification network with different
DCNN backbones, which comprised input, multiple con-
volutions, full connection, and output layers, was designed.
The trained DCNN extracted features from images that
contained sensor arrays and shrimp; afterwards, images were
classified into one of the two categories, annotated fresh (true)
and spoiled (false). Among four state-of-the-art DCNN
models, the WISeR50 model showed the highest accuracy
for freshness prediction, up to 99.94%, whereas VGG16
showed 98.51% (Table 2). In addition, to illustrate the

superiority of deep learning, ED values were applied for
comparison with the DCNN model. Following a previous
research, we randomly selected 50 sensor array images from
fresh and spoiled categories to assess the prediction accuracy of
ED values.6 In the end, the ED values achieved an overall
prediction accuracy of 56.05%, which is significantly lower than
those from DCNN models, indicating that it is difficult to
distinguish fresh from spoiled using ED values in practice
(Figure 8a).
Due to the superior accuracy of the DCNN algorithm, the

model can reduce the interfering effect caused by photo-taking
environments, including angle, lighting, and white balance,
when compared to values from the ED method. This
superiority of DCNN could be explained by the algorithm of
the fitness model and data structure. RGB values of the sensor
array do not linearly change with the concentration of gases,
and thus the non-linear DCNN algorithm was consistent with

mathematical similarity.37 In addition, as epochs (i.e., the
number of passes the algorithm completes through the entire
database) increase, the loss (i.e., the difference between
predicted and actual result) approaches 0 and remains in a
plateau after 400 epochs (Figure 8b). This result proved that
the training model was effective and after 400 epochs, all
models achieved their highest accuracy for image-based
freshness prediction. The comparison of four DCNN model
confusion matrices is shown in Figure 8b whose diagonal
showed the number of correctly classified samples, further
illustrating the classification accuracy. In the statistical analysis
of binary classification, the F1 score is an indicator of test
accuracy following eq 6:

F
tp

tp fp fn0.5( )1 =
+ + (6)

where tp is the number of true positives, fp is the number of
false positives, and fn is the number of false negatives. It is the
harmonic mean calculated from the precision and recall of the
test, which might be a better measure to use when seeking a
balance between precision and recall is needed. The F1 score is
often used in the field of information retrieval for measuring
search, query classification, document classification, and
machine learning. For this research, the WISeR50 DCNN
model still showed the highest F1 score, up to 0.9994, whereas
the lowest is by VGG16, around 0.9853. This result confirmed
that the WISeR50 DCNN model was preferable for identifying
the freshness of shrimp with sensor array pictures.
Due to the higher accuracy of DCNN models than that of

conventional machine learning models, it would be advanta-
geous to apply it in colorimetric sensor array recognition and
classification tasks. Furthermore, there are many other sensor
arrays available for a good candidate, which could take
advantage of the DCNN model and promising to achieve
higher accuracy. This platform may be applied to other
colorimetric sensor array systems or for a different task. The
key advantage of this method is maintaining a high accuracy of
image classification, while the image database can be
established easily.

Table 2. Accuracy Comparison Results between the ED
Value Method and Four State-of-the-Art DCNN Models

models accuracy

Euclidean distance 56.05%
VGG16 98.51%
ResNet50 99.75%
WISeR50 99.94%
Inception-V3 98.90%

Figure 8. (a) Relation between DCNN model training loss with the increase in training epoch. (b) Confusion matrix of four DCNN models.
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■ CONCLUSIONS
By leveraging an integrated cross-reactive colorimetric sensor
array with a DCNN platform, a novel colorimetric sensor array
was developed to rapidly and accurately monitor shrimp
freshness in real time. The ice-templated Dye@chitosan/UiO-
66-Br sensor system, which was optimized by DFT and
GCMC simulation, showed significantly better sensitivity than
unmodified UiO-66. The sensor array platform successfully
detected gases released by spoiled shrimps (i.e., NH3, MA, and
TMA) and formed a scented fingerprint. All DCNN exhibited
remarkably better accuracy than commonly used ED analysis,
with the highest accuracy of 99.94% obtained from the
WISeR50 model. Newly developed sensor array platform has
great potential to be applied in smart food packages, and this
work shed light on both reticular chemistry and artificial
intelligence technology utilization in food research and
industry.
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(12) Anik, Ü.; Timur, S.; Dursun, Z. Metal organic frameworks in
electrochemical and optical sensing platforms: a review. Microchim.
Acta 2019, 186, 1−15.
(13) Ajdari, F. B.; Kowsari, E.; Shahrak, M. N.; Ehsani, A.; Kiaei, Z.;
Torkzaban, H.; Ershadi, M.; Eshkalak, S. K.; Haddadi-Asl, V.;
Chinnappan, A. A review on the field patents and recent

ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Research Article

https://doi.org/10.1021/acssuschemeng.1c04704
ACS Sustainable Chem. Eng. XXXX, XXX, XXX−XXX

J

https://pubs.acs.org/doi/10.1021/acssuschemeng.1c04704?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.1c04704/suppl_file/sc1c04704_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qin+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-7496-3921
https://orcid.org/0000-0002-7496-3921
mailto:wangqin@umd.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Peihua+Ma"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zhi+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wenhao+Xu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zi+Teng"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-6029-7024
https://orcid.org/0000-0002-6029-7024
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yaguang+Luo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Cheng+Gong"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7714-6380
https://orcid.org/0000-0001-7714-6380
https://pubs.acs.org/doi/10.1021/acssuschemeng.1c04704?ref=pdf
https://doi.org/10.1680/jwarm.16.00026
https://doi.org/10.1680/jwarm.16.00026
https://doi.org/10.1680/jwarm.16.00026?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1680/jwarm.16.00026?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1111/faf.12525?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1146/annurev-food-030117-012433
https://doi.org/10.1146/annurev-food-030117-012433
https://doi.org/10.1016/j.tifs.2018.09.001
https://doi.org/10.1016/j.tifs.2018.09.001
https://doi.org/10.1038/s43016-021-00229-5
https://doi.org/10.1038/s43016-021-00229-5
https://doi.org/10.1002/adma.202004805
https://doi.org/10.1002/adma.202004805
https://doi.org/10.1002/adma.202004805
https://doi.org/10.1021/acssensors.9b00825?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssensors.9b00825?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/adma.201905522
https://doi.org/10.1021/acsnano.8b02371?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.8b02371?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.8b02371?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C9CS00459A
https://doi.org/10.1002/admt.201800488
https://doi.org/10.1002/admt.201800488
https://doi.org/10.1007/s00604-019-3321-0
https://doi.org/10.1007/s00604-019-3321-0
https://doi.org/10.1016/j.ccr.2020.213441
pubs.acs.org/journal/ascecg?ref=pdf
https://doi.org/10.1021/acssuschemeng.1c04704?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


developments over the application of metal organic frameworks
(MOFs) in supercapacitors. Coord. Chem. Rev. 2020, 422, 213441.
(14) Giannakoudakis, D. A.; Bandosz, T. J. Defectous UiO-66 MOF
nanocomposites as reactive media of superior protection against toxic
vapors. ACS Appl. Mater. Interfaces 2020, 12, 14678−14689.
(15) Demir, H.; Walton, K. S.; Sholl, D. S. Computational screening
of functionalized UiO-66 materials for selective contaminant removal
from air. J. Phys. Chem. C 2017, 121, 20396−20406.
(16) Ordovas, J. M.; Ferguson, L. R.; Tai, E. S.; Mathers, J. C.
Personalised nutrition and health. Bmj. 2018, 361, bmj.k2173.
(17) Ege, T.; Yanai, K. Image-based food calorie estimation using
recipe information. IEICE Trans. Inf. Syst. 2018, E101.D, 1333−1341.
(18) Yu, X.; Wang, J.; Wen, S.; Yang, J.; Zhang, F. A deep learning
based feature extraction method on hyperspectral images for
nondestructive prediction of TVB-N content in Pacific white shrimp
(Litopenaeus vannamei). Biosyst. Eng. 2019, 178, 244−255.
(19) Mao, D.; Wang, F.; Hao, Z.; Li, H. Credit evaluation system
based on blockchain for multiple stakeholders in the food supply
chain. Int. J. Environ. 2018, 15, 1627−1-21.
(20) Bisgin, H.; Bera, T.; Ding, H.; Semey, H. G.; Wu, L.; Liu, Z.;
Barnes, A. E.; Langley, D. A.; Pava-Ripoll, M.; Vyas, H. J.; Tong, W.;
Xu, J. Comparing SVM and ANN based machine learning methods
for species identification of food contaminating beetles. Sci. Rep. 2018,
8, 1−12.
(21) Jasuja, H.; Walton, K. S. Experimental study of CO2, CH4, and
water vapor adsorption on a dimethyl-functionalized UiO-66
framework. J. Phys. Chem. C 2013, 117, 7062−7068.
(22) Bernini, M.; Fairen-Jimenez, D.; Pasinetti, M.; Ramirez-Pastor,
A.; Snurr, R. Screening of bio-compatible metal-organic frameworks as
potential drug carriers using Monte Carlo simulations. J. Mater. Chem.
B 2014, 2, 766−774.
(23) Ma, D.; Han, G.; Gao, Z. F.; Chen, S. B. Continuous UiO-66-
Type Metal−Organic Framework Thin Film on Polymeric Support
for Organic Solvent Nanofiltration. ACS Appl. Mater. Interfaces 2019,
11, 45290−45300.
(24) Mei, L.; Teng, Z.; Zhu, G.; Liu, Y.; Zhang, F.; Zhang, J.; Li, Y.;
Guan, Y.; Luo, Y.; Chen, X.; Wang, Q. Silver Nanocluster-Embedded
Zein Films as Antimicrobial Coating Materials for Food Packaging.
ACS Appl. Mater. Interfaces 2017, 9, 35297−35304.
(25) Kuo, C.-J.; Wang, D.-C.; Chen, T.-T.; Chou, Y.-C.; Pai, M.-Y.;
Horng, G.-J.; Hung, M.-H.; Lin, Y.-C.; Hsu, T.-H.; Chen, C.-C. In
Improving Defect Inspection Quality of Deep-Learning Network in
Dense Beans by Using Hough Circle Transform for Coffee Industry,
2019 IEEE Int. Conf. Syst. Man Cybern. Man and Cybernetics (SMC),
IEEE: 2019; pp. 798−805, DOI: 10.1109/SMC.2019.8914175
(26) Simonyan, K.; Zisserman, A., Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556
2014.
(27) He, K.; Zhang, X.; Ren, S.; Sun, J. In Identity mappings in deep
residual networks, European conference on computer vision, Springer:
2016; pp 630−645, DOI: 10.1007/978-3-319-46493-0_38
(28) Zagoruyko, S.; Komodakis, N., Wide residual networks. arXiv
preprint arXiv:1605.07146 2016.
(29) Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov,
D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. In Going deeper with
convolutions, Proceedings of the IEEE conference on computer vision and
pat tern recogn i t ion , 2015; pp 1−9, DOI: 10.1109/
CVPR.2015.7298594
(30) Hu, Z.; Peng, Y.; Kang, Z.; Qian, Y.; Zhao, D. A modulated
hydrothermal (MHT) approach for the facile synthesis of UiO-66-
type MOFs. Inorg. Chem. 2015, 54, 4862−4868.
(31) Cmarik, G. E.; Kim, M.; Cohen, S. M.; Walton, K. S. Tuning
the adsorption properties of UiO-66 via ligand functionalization.
Langmuir 2012, 28, 15606−15613.
(32) Yu, D.; Ghosh, P.; Snurr, R. Q. Hierarchical modeling of
ammonia adsorption in functionalized metal−organic frameworks.
Dalton Trans. 2012, 41, 3962−3973.

(33) Kim, K. C.; Yu, D.; Snurr, R. Q. Computational screening of
functional groups for ammonia capture in metal−organic frameworks.
Langmuir 2013, 29, 1446−1456.
(34) Xiao-wei, H.; Zhi-hua, L.; Xiao-bo, Z.; Ji-yong, S.; Han-ping,
M.; Jie-wen, Z.; Li-min, H.; Holmes, M. Detection of meat-borne
trimethylamine based on nanoporous colorimetric sensor arrays. Food
Chem. 2016, 197, 930−936.
(35) Granato, D.; Santos, J. S.; Escher, G. B.; Ferreira, B. L.; Maggio,
R. M. Use of principal component analysis (PCA) and hierarchical
cluster analysis (HCA) for multivariate association between bioactive
compounds and functional properties in foods: A critical perspective.
Trends Food Sci. Technol. 2018, 72, 83−90.
(36) Fu, Q.; Wen, L.; Zhang, L.; Chen, X.; Pun, D.; Ahmed, A.;
Yang, Y.; Zhang, H. Preparation of ice-templated MOF−polymer
composite monoliths and their application for wastewater treatment
with high capacity and easy recycling. ACS Appl. Mater. Interfaces
2017, 9, 33979−33988.
(37) Ciocca, G.; Napoletano, P.; Schettini, R. CNN-based features
for retrieval and classification of food images. Computer Vision and
Image Understanding 2018, 176-177, 70−77.

ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Research Article

https://doi.org/10.1021/acssuschemeng.1c04704
ACS Sustainable Chem. Eng. XXXX, XXX, XXX−XXX

K

https://doi.org/10.1016/j.ccr.2020.213441
https://doi.org/10.1016/j.ccr.2020.213441
https://doi.org/10.1021/acsami.9b17314?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.9b17314?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.9b17314?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.7b07079?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.7b07079?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.7b07079?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1136/bmj.k2173
https://doi.org/10.1587/transinf.2017MVP0027
https://doi.org/10.1587/transinf.2017MVP0027
https://doi.org/10.1016/j.biosystemseng.2018.11.018
https://doi.org/10.1016/j.biosystemseng.2018.11.018
https://doi.org/10.1016/j.biosystemseng.2018.11.018
https://doi.org/10.1016/j.biosystemseng.2018.11.018
https://doi.org/10.3390/ijerph15081627
https://doi.org/10.3390/ijerph15081627
https://doi.org/10.3390/ijerph15081627
https://doi.org/10.1038/s41598-018-24926-7
https://doi.org/10.1038/s41598-018-24926-7
https://doi.org/10.1021/jp311857e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp311857e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp311857e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C3TB21328E
https://doi.org/10.1039/C3TB21328E
https://doi.org/10.1021/acsami.9b16332?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.9b16332?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.9b16332?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.7b08152?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.7b08152?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/SMC.2019.8914175
https://doi.org/10.1109/SMC.2019.8914175
https://doi.org/10.1109/SMC.2019.8914175
https://doi.org/10.1109/SMC.2019.8914175?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/978-3-319-46493-0_38?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/CVPR.2015.7298594?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.inorgchem.5b00435?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.inorgchem.5b00435?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.inorgchem.5b00435?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la3035352?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la3035352?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C2DT11908K
https://doi.org/10.1039/C2DT11908K
https://doi.org/10.1021/la3045237?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la3045237?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.foodchem.2015.11.041
https://doi.org/10.1016/j.foodchem.2015.11.041
https://doi.org/10.1016/j.tifs.2017.12.006
https://doi.org/10.1016/j.tifs.2017.12.006
https://doi.org/10.1016/j.tifs.2017.12.006
https://doi.org/10.1021/acsami.7b10872?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.7b10872?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.7b10872?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cviu.2018.09.001
https://doi.org/10.1016/j.cviu.2018.09.001
pubs.acs.org/journal/ascecg?ref=pdf
https://doi.org/10.1021/acssuschemeng.1c04704?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

