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Abstract:  Research on two-dimensional (2D) materials has been explosively 

increasing in last seventeen years in varying subjects including condensed matter 

physics, electronic engineering, materials science, and chemistry since the 

mechanical exfoliation of graphene in 2004. Starting from graphene, 2D materials now 

have become a big family with numerous members and diverse categories. The 

unique structural features and physicochemical properties of 2D materials make them 

one class of the most appealing candidates for a wide range of potential applications. 

In particular, we have seen some major breakthroughs made in the field of 2D 

materials in last five years not only in developing novel synthetic methods and 

exploring new structures/properties but also in identifying innovative applications and 

pushing forward commercialisation. In this review, we provide a critical summary on 

the recent progress made in the field of 2D materials with a particular focus on last five years. After a brief background 
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introduction, we first discuss the major synthetic methods for 2D materials, including the mechanical exfoliation, liquid 

exfoliation, vapor phase deposition, and wet-chemical synthesis as well as phase engineering of 2D materials belonging 

to the field of phase engineering of nanomaterials (PEN). We then introduce the superconducting/optical/magnetic 

properties and chirality of 2D materials along with newly emerging magic angle 2D superlattices. Following that, the 

promising applications of 2D materials in electronics, optoelectronics, catalysis, energy storage, solar cells, biomedicine, 

sensors, environments, etc. are described sequentially. Thereafter, we present the theoretic calculations and simulations 

of 2D materials. Finally, after concluding the current progress, we provide some personal discussions on the existing 

challenges and future outlooks in this rapidly developing field. 

Key Words:  Two-dimensional materials;  Transition metal dichalcogenides;  Phase engineering of nanomaterials;  

Electronics;  Optoelectronics;  Catalysis;  Energy storage and conversion 
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1  Introduction 
The first report on the mechanical cleavage of atomically thin 

single-crystalline carbon film, namely graphene, and its 

extraordinary transport properties by Geim, Novoselov and co-

workers 1 in 2004 had ignited the resurgence of a class of 

fascinating functional nanomaterials, i.e., two-dimensional (2D) 

materials 2–10. 2D materials now have been recognized as a type 

of nanomaterials which have a sheet-like morphology featuring 

with a large lateral size from hundreds of nanometers to tens of 

micrometers or even larger but a thickness in single or few 

atomic layer 2,3. Such a unique structural feature of 2D materials 
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endows them with various unconventional physical, chemical, 

optical, electronic and magnetic properties as compared to their 

bulk, zero-dimensional (0D) and one-dimensional (1D) 

counterparts 2. Owing to their unusual properties, 2D materials 

have been proven to be one of the most promising candidates for 

numerous potential applications like electronics 11–14, 

optoelectronics 15–20, catalysis 21–26, energy storage 27–34, solar 

cells 35–38, biomedicine 39–45, sensors 46–49, environments 50–54, 

etc. Driven by their unusual properties and promising 

applications, a large number of novel 2D materials beyond 

graphene, such as transition metal dichalcogenides (TMDs 

including MoS2, MoSe2, MoTe2, WS2, WSe2, ReS2, TaS2, etc.) 55,56, 

hexanol boron nitride (h-BN) 57,58, graphyne 59,60, noble metal 

dichalcogenides (NMDs: PdSe2, PtSe2, PtS2, etc.) 61,62, elemental 

2D materials (e.g., black phosphorus (BP), tellurium, silicene, 

germanene, borophene, etc.) 63–65, layered metal oxides 66,67, 

layered double hydroxides (LDHs) 68,69, graphitic carbon nitride 

(g-C3N4) 70,71, MXenes 72, metals 73, organics/polymers 74,75, 

metal-organic frameworks (MOFs) 76,77, covalent-organic 

frameworks (COFs) 78,79, organic-inorganic hybrid perovskites 80–82, 

and transition metal halides 83,84, have been synthesized by 

various synthetic methods in the last decade. It is worth pointing 

out that the number of materials in the family of 2D materials is 

still continuously growing every year. 

On the basis of the previous research works, the last five years 

have witnessed some major breakthroughs made in the field of 

2D materials in all aspects. Firstly, a large number of novel 2D 

materials have been reported, including NMDs 85–87, tellurium 88,89, 

selenium 90, and so on. Secondly, some novel methods have been 

developed for synthesis of 2D materials with higher quality, 

larger size, or better control, such as oxygen plasma- or Au-

enhanced mechanical exfoliation 91,92, organic intercalation-

assisted liquid exfoliation of layered materials (e.g., BP, TMDs, 

InSe, etc.) 93–95, salt-assisted chemical vapor deposition (CVD) 

growth of a library of 2D thin layers 96,97, CVD growth of wafer-

scale high-quality 2D thin films 98,99, pulsed laser deposition 

(PLD) of BP thin films 100, vapor phase synthesis of high-purity 

1T'-phase 2D TMD crystals 101, and liquid metal-assisted 

synthesis of metal oxide nanosheets 102. Thirdly, some new 

promising applications of 2D materials have been demonstrated, 

such as integrated circuits based on wafer-scale 2D thin films 103 

and infrared imaging sensor systems based on graphene 104. 

More importantly, some newly emerging research directions 

have been extensively explored on 2D materials in recent years. 

For example, the phase engineering of nanomaterials (PEN) 

including 2D materials has been recognized as a promising way 

to fine tune their physicochemical properties and enhance their 

performances in addition to other conventional structural 

characteristics, such as size, thickness, defects, vacancies, and 

interlayer spacing 105,106. As another typical example, by simply 

stacking two 2D graphene in a specific magic angle, namely 

magic angle 2D superlattices, the properties of graphene can be 

tuned from a conductor to a superconductor or insulator 107,108. 

Inspired by the unexpected properties of magic angle graphene 

superlattices, magic angle 2D superlattices have become one of 

the most interesting materials to explore new properties in 

condensed matter physics. 

Although many review articles related to 2D materials have 

been published previously, most of them were published in 

several years ago or even earlier, and most of them focused on a 

selected type 2D materials (e.g., graphene, graphyne, TMDs, 

MOFs, elemental ones, metals, MXenes, etc.) 4,55,73, or specific 

application (e.g., electronics, optoelectronics, energy storage, 

electrocatalysis, sensors, biomedicine, etc.) 27,31,39. Bearing this 

mind, offering a comprehensive review article to cover all of the 

2D materials from all aspects with highlights on recent progress 

in this growing field is of great significance for its further 

development. To this end, this review aims to critically 

summarize the recent progress on 2D materials with particular 

focus on the last five years. Following a brief background 

introduction, the major synthetic methods for 2D materials, 

including the mechanical exfoliation, liquid exfoliation, vapour 

phase deposition, and wet-chemical synthesis as well as phase 

engineering of 2D materials are first discussed. The 

superconducting, optical, magnetic properties and chirality of 

2D materials along with newly emerging magic angle 2D 

superlattices are then introduced. Thereafter, we summarize the 

great potential of 2D materials in various applications like 

electronics, optoelectronics, catalysis, energy storage, solar 

cells, biomedicine, sensors, environments, etc. Following that, 

recent progress on the theoretic calculations and simulations of 

2D materials is also discussed. Finally, we conclude this Review 

by summarizing the current process and offering some personal 

insights on the existing challenges and future opportunities in 

this promising field. 

2  Synthetic methods 
2.1  Mechanical exfoliation 

Mechanical exfoliation has been recognized as an efficient 

method to obtain fresh atomically flat surface of layered 

materials 109,110. In 2004, a new tape-based exfoliation method 

developed in Geim’s group was used to prepare monolayer and 

few-layer graphene from graphite 1,111. As one of the most 

popular “top-down” strategy to date, this mechanical exfoliation 

technique has been widely used to get a large number of 2D 

crystals, such as MoS2 
112,113, WS2 

114, SnS2 
115 and BP 115,116. The 

exfoliated 2D materials are ideal samples to study their intrinsic 

electronic 117,118, optical 119 and mechanical properties. However, 

there are a few shortcomings for the conventional mechanical 

exfoliation. Firstly, the sample size of exfoliated 2D materials is 

usually in the range of few to tens of micrometers. Secondly, the 

yield is quite low. With the discovery of new layered materials, 

novel mechanical methods are desired to prepare high-quality, 

large-area 2D materials with relatively high efficiency. 

Although the exfoliation processes are generally simple, some 

scientific questions were not well understood at the beginning. 


