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ABSTRACT: The static labels presently prevalent on the food
market are confronted with challenges due to the assumption that a
food product only undergoes a limited range of predefined
conditions, which cause elevated safety risks or waste of perishable
food products. Hence, integrated systems for measuring food
freshness in real time have been developed for improving the
reliability, safety, and sustainability of the food supply. However,
these systems are limited by poor sensitivity and accuracy. Here, a
metal−organic framework mixed-matrix membrane and deep
learning technology were combined to tackle these challenges.
UiO-66-OH and polyvinyl alcohol were impregnated with six
chromogenic indicators to prepare sensor array composites. The
sensors underwent color changes after being exposed to ammonia at
different pH values. The limit of detection of 80 ppm for
trimethylamine was obtained, which was practically acceptable in the food industry. Four state-of-the-art deep convolutional
neural networks were applied to recognize the color change, endowing it with high-accuracy freshness estimation. The simulation
test for chicken freshness estimation achieved accuracy up to 98.95% by the WISeR-50 algorithm. Moreover, 3D printing was applied
to create a mold for possible scale-up production, and a portable food freshness detector platform was conceptually built. This
approach has the potential to advance integrated and real-time food freshness estimation.
KEYWORDS: real-time estimation, metal−organic frameworks, ammonia, deep convolutional neural networks, UiO-66

Food labels currently used in the food industry only provide
consumers with rough guidance to their expected shelf-life

since manufactories assume that the products are exposed to a
limited set of predefined storage conditions.1 The static nature
of these labels brings up two major challenges: (a) they do not
take into consideration variant conditions that reduce shelf-life,
such as temperature abuse and the difference between
batches,2 and (b) perishable food waste caused by the
overcautious allocation of the expiration date accounted for
approximately 35% of the annual production, according to a
working paper from the United States Department of
Agriculture (USDA).3 Therefore, novel analytical tools that
are able to determine the quality and safety attributes in real
time and accurately estimate the shelf life of food products may
potentially contribute to market value as well as sustainable
development.
Ideally, real-time shelf life prediction for foods should satisfy

the following requirements:1,2,4 (a) the complexity of natural
foods requires the detection system to input multiple
attributes’ indicators for shelf-life estimation; (b) indicators
and sensors should reliably monitor the signals originating
from actual deterioration of the product; (c) integration of in

situ computing should determine the current freshness and
estimate the shelf life in real time. At present, the mainstream
approach is to mimic the mammalian olfactory system to
develop an artificial scent screening system, which has been
applied in the detection of drugs, explosives, and rapid food
analysis. However, considering that the kinetics of the food
deterioration process are influenced by multiple factors, such
as nutritional loss, microbial growth, environmental factors,
etc., conventional methods that integrate metal oxides or
colorimetric dyes into a cross-reactive sensor array suffer from
poor sensitivity and low accuracy.5−7 To address these
challenges, we took advantages of reticular chemistry, metal−
organic framework mixed-matrix membrane (MOF-MMM),
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with help from deep learning technology to achieve practical
and acceptable accuracy for food freshness estimation systems.
Metal−organic frameworks (MOFs), a family of chemically

mutable materials with high porosity, offer various advantages
and thus are considered as promising additives for mixed-
matrix membranes (MMMs).8 The chemically diverse and
controllable MOF structures (by careful selection of ligands
with appropriate chemical functionalities) can be prepared to
enhance the interactions with bulk polymeric materials, which
improve the selectivity of MMMs by reducing the microgaps
between inorganic and organic phases.9 Furthermore, the
chemical mutagenicity of MOFs can be leveraged to enhance
adsorption selectivity to certain chemical species.10 In recent
years, MOF-based materials have been widely investigated in
the development of food safety sensors due to advantages of
uniform structures, easy-to-functionalize surfaces, tunable
composition, ultrahigh porosity for the detection of pesticide
residues, veterinary drugs, pathogens, heavy metals, mycotox-
ins, and illegal additives, etc.5,11,12 Stability is one of the major
concern for MOF application in food application; nevertheless,
UiO-66, which has high structural robustness, is one of several
potential MOFs. UiO-66 has excellent thermal and chemical
stability in water, even stable in very acidic aqueous solutions,
and demonstrated a high adsorption capacity for polar
analytes.13 However, accurate image recognition of MMMs is
highly challenging with traditional statistical methods,
including principal component analysis (PCA) and hierarchical
cluster analysis (HCA).12 The latest breakthroughs in
computer vision research proved the deep convolutional
neural network (DCNN) and its derivative algorithms as a
promising approach for image recognition, and they have
exhibited superiority in dietary monitoring, food supply chain
evaluation, and food quality detection.4,5

Here, the MOF-MMM system was for the first time
introduced to prepare a food freshness sensor array. When
compared to other materials, e.g., an organic polymer
membrane sensor array or inorganic membranes, a balance
between production cost, gas selectivity, and stability is
obtained by the MOF-MMM system. MOF-MMM was
synergized to overcome the low sensitivity, and DCNN
technology was applied to improve the accuracy of the cross-
reactive colorimetric sensor array system. The UiO-66-OH/
PVA MOF-MMM system was developed and systematically
characterized. Moreover, a real-time sensor array fingerprint
pattern recognition by DCNN was optimized after the
comparison of four state-of-the-art DCNN models. Finally,
we integrated the MOF-MMM sensor and DCNN image
recognition system together to achieve the prediction of
chicken freshness with an accuracy of up to 98.95%.

■ EXPERIMENTAL SECTION
Materials. Zirconium tetrachloride (99.5%), 2-hydroxytereph-

thalic acid (BDC-OH, 98.0%), N,N-dimethylformamide (DMF,
99.0%), Nile red, poly(vinyl alcohol) (PVA, Mw 85,000−124,000),
acetic acid (HAc, 99.9%), boric acid, (99.8%), 2-methoxyethanol
(99%), and 6 dyes, i.e., methyl red (MR), 5,10,15,20-tetraphenyl-
21H,23H-porphine zinc (Zn-TPP), curcumin (CUR), chlorophenol
red (CPR), bromocresol purple (BCP), and bromophenol blue
(BPB), ammonia hydrogen solution (25% in water), methylamine
solution (33% in absolute ethanol), and trimethylamine solution
(45% in water) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Detailed compositions of dyes used in this study are presented
in Table S1. All chemicals are of analytical grade. The chicken breast

was bought from Costco Wholesale Corporation (Seattle, WA, USA).
The ZipBag was bought from a local market (Ziploc, NJ, USA).
Synthesis of UiO-66 and UiO-66-OH. UiO-66-OH was

synthesized by a solvothermal method following a previous report
with modification.14 First, ZrCl4 (1.17 g, 5 mmol), BDC (0.83 g, 5
mmol), and 1.0 mL of acetic acid were dissolved in DMF (30 mL) at
room temperature. The UiO-66 particle was synthesized by replacing
BDC with BDC-OH (0. 92 g, 5 mmol). After adding 2 mL of
deionized water and thoroughly mixing the mixture, it was placed in a
Teflon-lined stainless-steel autoclave. The autoclave was heated at 121
°C on an oil bath. After cooling the solution for 30 min at room
temperature, the UiO-66 and UiO-66-OH particles were separated by
centrifugation (12,096g, 10 min) at room temperature and washed
three times with ethanol. The resultant white powder was baked in a
40 °C oven for 4 h before being verified using XRD and SEM.
Synthesis of Dye@UiO-66/PVA and Dye@UiO-66-OH/PVA

MMM. PVA resin (1 g) was first dissolved in deionized water at 90 °C
for 1 h with stirring to obtain 10 wt % PVA aqueous solution. To
avoid aggregation, UiO-66 or UiO-66-OH nanoparticles (200 mg)
were first dispersed in 50 mL of water with assistance from
ultrasound. A certain volume of the prepared MOF dispersion was
diluted with deionized water to a final volume of 27 mL.
Subsequently, 2.5 mL of PVA aqueous solution and 0.5 mL of dye
solution (e.g., 5 mg/mL in 2-methoxyethanol) were added to it. After
vigorous stirring, 0.2 mL of each solution was transferred to its
assigned well on a 96-well plate, with a diameter of 6 mm for each
pore. The solution was then degassed and dried in a vacuum for 24 h
on a 96-well plate. To make the sensor array, all of the films with
various colors were taped together on paper tape.
Calculation of Amine Gas Concentration. Experiments on

amine gas detection were carried out in conventional Petri dishes
(100 × 15 mm) at a temperature of 20 °C. The colorimetric sensor
array was attached to the Petri dish’s lid. A particular volume of liquid
analyte (i.e., ammonia (NH3), methylamine (MA), and trimethyl-
amine (TMA)) was injected into the dish and sealed with parafilm to
achieve the desired gas concentration. The resulting gas concentration
(C) (ppm) was calculated using eq 1

= × ×
×

× ×C V D W
M V

22.4 107
(1)

where V (μL) is the liquid analyte volume, D (mg/L) is the liquid
density, W is the mass fraction of the liquid, M (g/mol) is the
molecular weight of the liquid analyte, and V (L) is the volume of
Petri dishes.
Determination of the Swelling Index. When the polymer

matrix was submerged in water, the swelling index was utilized to
assess each membrane’s capacity to swell. Initially, each film was
weighed (Mdry). The films were then soaked in room temperature
water. Each membrane was removed from the water and weighed on a
regular basis until a consistent membrane weight (Mswollen) was
achieved, indicating that equilibrium had been established. The
swelling index of films or water uptake was determined by eq 215

i
k
jjjjjj

y
{
zzzzzz= ×

M M

M
swelling index(%) 100%

swollen dry

dry (2)

Solubility Determination for MOF/PVA-MMM. Each film’s
membrane sample was dried in an oven at 100 °C for 24 h. The
membranes were then weighed to determine their original dry content
(Wi). After that, all membrane samples were immersed in water and
kept at 30 °C in a covered beaker for 24 h while being stirred. The
membrane samples were then removed, washed, and dried in an oven
at 100 °C until they reached a consistent weight (W0). Membrane
solubility was determined by eq 315

i
k
jjjjj

y
{
zzzzz= ×W W

W
solubility(%) 100%i

i

0

(3)

Total Volatile Basic Nitrogen (TVB-N) Measurement. Fresh
chicken breast (200 ± 30 g), without any preparation, was put in a
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plastic box to replicate store storage conditions. Each package has one
sensor array affixed to the inside of the box. Before analysis, the
chicken was kept at 4 °C.

A separate batch of 24 (8 storage periods × 3 parallel studies)
packets of chicken was created for TVB-N testing to examine the
freshness of chicken without the interference of picture capture. 100
mL of distilled water was used to homogenize 10 g of minced chicken
(Ultra-Turrax T25, IKA, Staufen, Germany). After 30 min, the
mixture was filtered to get a liquid sample. Then, in the inner chamber
of the Conway dish, 3 mL of boric acid absorption solution (20 g/L)
and 50 mL of pH indicator (methyl red:bromocresol green = 1:5, v/
v) were added (diameter 90 mm). 3 mL of potassium carbonate
saturated solution and 1 mL of sample liquid were introduced to the
outer chamber in that order. The Conway dish was sealed and
incubated for 2 h at 37 °C. As an absorbent solution, boric acid
absorbed the volatile amine vapors. 0.1 mol/L hydrochloric acid
(HCl) was used to titrate the abovementioned combination. The
inner volume of the Conway dish after airtight sealing is 100 mL. The
number of volatile amines was calculated with eq 4

= × ×
×

×X
v v C

m
( 1 2) 14

0.05
100

(4)

where X is TVB-N level of the sample (mg/100 g), v1 is the volume
of 0.1 mol/L HCl consumed by the sample (mL), v2 is the volume of
0.1 mol/L HCl consumed by the control (mL), C is the concentration
of HCl (mol/L), 14 is the atomic mass of nitrogen (g/mol), and m is
the weight of the sample (g).
Circular Region of Interest (CROI) Identification. To detect

the color region of the sensor array, the Hough circle transformation
was used. By ″voting″ in the Hough parameter space and then picking
global maxima in an accumulator matrix, the circled candidates were
created. The inverse ratio of the resolution was set to 1, the higher
threshold for the internal Canny edge detector was set to 15, the
threshold for center detection was set to 13, and the radius range to
be detected was set to [20,40) pixels to get the best result. The CROI
was calculated using the Hough circle transform to designate seven
dye regions.
Database Preparation. To capture data from the sensor, a 5 s

video was shot with chicken at a specific storage period for each box.
The color and intensity of the backdrop light in the photo box
changed throughout the course of 5 s, depending on the software
parameters. Eight time periods covering the spoiling process were
chosen. A piece of chicken was tested for TVB-N throughout the data
collection time, while others were utilized for picture capture. We
altered the light in the input photographs and photographed them
using an iPhone 11 Max Pro for training to completely simulate real-
world circumstances. Also, to further mimic the lighting conditions in

the real world, the light intensity and color temperature of the sample
photo area will be continuously changed during the collection process.
Images collected in this study included both the chicken and sensor.
The 60 fps video was then randomly sampled at 10 fps and exported
as an image set. Based on the actual measured TVB-N results and
chicken freshness criteria, we labeled samples <28 mg N/100 g as
fresh and > 28 mg N/100 g as spoiled followed by a previous study in
food research and industry.16 Finally, the database was divided into a
training set and a testing set in a 7:3 ratio. The test set had 1927
pictures, and the final training set had 4492 tagged images. In both the
training and test sets, the fresh to spoilt ratio was 1:1.
Statistical Analysis. Measurements of particle size, surface

charge, swelling index, and solubility were performed in triplicate
with data reported as mean ± standard error. Data were analyzed by
one-way analysis of variance at a significance level of p = 0.05 using
the SPSS 16.0 package (SPSS Inc., Chicago, USA).

■ RESULTS AND DISCUSSION
Synthesis and Morphologies of the UiO-66-OH/PVA

Sensor Array. The identification of MOF-MMM materials
and the detail of UiO-66-OH NP characteristics are
comprehensively reported in the Supporting Information.
XRD was first utilized to examine the MOF particle and

MOF-MMM system, and the results showed the same
diffraction results for both UiO-66 and UiO-66-OH, which
exhibited a distinct crystal peak in the detect range (Figure
S1). However, when prepared as a MOF-MMM system, only
the PVA peak was detected, a result consistent with other
MOF-MMM-related reports. The results of the thermogravi-
metric analysis are shown in Figure 1. The UiO-66 NPs were
decomposed at 550−600 °C, but UiO-66-OH NPs started to
decompose from 400 °C, without a clear decomposition stage.
This was due to the defects brought by the hydroxyl groups,
which affected the stability of MOF structures. For the MOF-
MMM film system, the thermogravimetric analysis showed
decomposition in the range of 250−300 °C, which is the
thermal decomposition temperature of PVA. This result
showed that the factor affecting the thermal stability of the
system is mainly PVA. Also in the interval less than 100 °C,
there was a 10% mass loss in the MMM prepared with UiO-66-
OH since it binds more readily to water in the environment
than the MMM prepared with bare UiO-66, resulting in a
bigger mass loss due to volatilization of absorbed water during
thermogravimetric analysis.

Figure 1. Thermogravimetric analyses of NPs of UiO-66 and UiO-66-OH (left) and films of UiO-66/PVA and UiO-66-OH/PVA (right).
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The UiO-66-OH/PVA film loaded with three categories of
dyes was successfully synthesized (Figure 2a). The MMM
system was directly formed on the PARAFILM M film by using
a 3D-printed mold, which achieved a low cost and had
potential for mass production (schematic of sensor array
fabrication shown in Figure 2b). To deposit the gas-sensitive
sensors on parafilm, six 100 μL dye@UiO-66-OH/PVA
solutions were drop-cast onto the pore of the mold, where
the diameter of each pore was 6 mm and the distance between
neighboring pores averages at 2 mm. Many studies have
proved the reliance of gas transfer efficiency and sensing
stability on the microstructure and affinity to dyes of the
nanocomposites.4,17 SEM was applied to observe the
morphologies of the MOF particles at acidic to neutral pH
values as shown in Figure 2c. The uniform MOF NPs kept
their crystal structure with a particle size of approximately 100

nm, and there were no observed changes for MOF NPs in
different pH conditions. Meanwhile, no dye aggregation was
found in the SEM images, indicating that MOF NPs play a
critical role as a carrier in dispersing the dye, which was
demonstrated in previous reports. Such a porous structure was
expected to provide a large surface area and gas sensing site.
Figure 1d shows the FTIR spectrum of MOF NPs and MOF
MMMs. Peaks related to O−H and C−H bending were
intermingled with the Zr−O peak at lower frequencies (main
bands at 746 cm−1). The longitudinal and transverse peaks
were assigned to a twin peak at 725 and 620 cm−1, respectively.
Peaks related to O−H and C−H bending were intermingled
with the Zr−O peak at lower frequencies (main bands at 746
cm−1). The longitudinal and transverse peaks were assigned to
a twin peak at 725 and 620 cm−1, respectively. The MOF
showed absorption bonds at 1590 and 1390 cm−1 that were

Figure 2. Preparation and characterization of colorimetric sensor array. (a) Schematic of the sensor array in 3D printing molds. Each pore filled
with six types of dyes with UiO-66-OH/PVA solution. (b) Schematic showing the fabrication of the dye@UiO-66-OH/PVA sensor array. UiO-66-
OH are cross-linked with PVA via hydrogen bonding, and the dye was adopted to the surface of UiO-66-OH. (c)Scanning electron microscopy
image of UiO-66-OH NPs at pH 2 (left), UiO-66-OH NPs at pH 7 (middle), and the UiO-66-OH/PVA film. (d) Infrared spectra of UiO-66 NPs,
the UiO-66@PVA film, and the UiO-66-OH@PVA film. (e) Spectral scanning of the six different dyes loaded in the UiO-66-OH@PVA film.
Scanning range from 300−650 nm.
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assigned to the −COOH groups. The aromatic region (C�C)
of the methyl red dye appeared at 1445 cm−1.
The maximum absorption peaks of the different dyes were

detected using UV−Vis (Figure 2e). They were in the visible
range of 400−650 nm, which indicated that the sensor color
was effectively extracted using a CCD camera in the visible
band of the mobile device. At the same time, the characteristic
peaks of each dye were clearly visible, which indicated that the
MOF-MMM system itself had little interference with the color.
To test its ability to satisfy the character requirement as a

food package in practical conditions, water stability, thermal
stability, and mechanical properties were characterized. First,
dye leakage and the swell index were tested by immersing Nile
red-loaded UiO-66-OH/PVA films (NR@UiO-66-OH/PVA)
in water using a Nile red-loaded PVA film (NR@PVA) as the
control group. The swelling index and solubility of the sensor
array are presented in Figure 3. Nile red was selected as a

model dye since it has a characteristic absorbance peak at 580
nm at pH 6.3, which is in the working range of the sensor
array. UiO-66-OH/PVA showed a significantly higher swelling
index (24%) than the PVA film. Previous studies reported that
PVA showed a strong pH-dependent swelling behavior, having
a swelling ratio index in the range of 5%−15% when the pH
was in the range between 4 and 7 at room temperature. After
being mixed with UiO-66-OH NPs, the water retention
capability was slightly increased due to the hydroxyl groups on

MOF NPs. Considering the robust water stability of UiO-66
NPs, the MOF MMM intelligent packaging film had a practical
acceptable swelling ratio.15 Furthermore, the solubility of the
different systems was also tested. For the UiO-66-OH/PVA
system, the supernatant had no visible color and negligible
absorbance at 580 nm, whereas NR@PVA showed a red
supernatant. Furthermore, with the increased immersion time,
the absorbance increased from 0.7 to 2.1. These results
indicated that MOF NPs prevented Nile red from leaking out
of the MMM, whereas weak van der Waals force between PVA
and Nile red could not prevent the leakage, which may ensure
the package safety of the sensor array system.
Validation and Sensitivity of MOF-MMM in Standard

Conditions. Proteins are microbially degraded into peptides
and free amino acids, which are further decomposed into low-
grade amines and ammonia. The latter may be used as vital
indicators in meat and seafood safety. To evaluate and
optimize the sensing performance of MOF-MMM, dye@
UiO-66-OH/PVA, dye@UiO-66/PVA, and dye@PVA were
exposed to methylamine (MA) gas. The sensor array exhibited
an obvious pattern change over the test time with increasing
concentration of MA (Figure 4a). Dye@UiO-66-OH/PVA and
dye@UiO-66/PVA exhibited visible color differences with
increased MA concentration. These results demonstrated the
potential of our approach in rapid identification and
quantification of VOCs from foods. Limited by the human
naked eye’s color distinguish ability, this result could not be
clearly separated by our eyes, but nowadays cell phone cameras
can clearly distinguish colors.5 To quantitatively describe the
sensor array response, the Euclidean distance (ED) of the
circular region of interest (CROI) RGB value was measured
under exposure to different MA concentrations and different
time periods (Figure 5). The RGB values exhibited by the
sensor array were retrieved using the Hough circle transform
technique by an image recognition and color extraction system.
To sum, a circle candidate region was created by ″voting″ in
the Hough parameter space and then sorting the global
maximum from an accumulator matrix to segment the CROI
from a sensor array picture. Figure 4b depicts the perimeter of
the segmented CROI. Then, 50 pixels were chosen at random
from each CROI and labeled with the dye’s name, and the
variance of each pixel’s color components was estimated.
During the different exposure times, the time-dependent
pattern change was attributed to the increase of the reaction
process since our setup allows temporal accumulation of VOCs

Figure 3. Swelling index (%) and solubility of the PVA film with two
MOF-MMM films in an aqueous environment.

Figure 4. (a) Photos of the dye@UiO-66-OH/PVA sensor array exposed to methylamine gas as the gas concentration increased from 40 to 320
ppm. (b) Schematic of Hough transform ROI extraction processing.
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in the storage environment. All the MOF-involved sensor
arrays showed a significantly better response than dye@PVA,
which was attributed to the three-dimensional porous structure
of UiO-66 NPs, which enhanced gas transfer and brought
more reaction sites (see the different scale of the y axis). The
reflective effect in the figure was caused by the flatness of the
sensor. Since we used the 3D printing mold and PVA was
casted to form the film, the small-dimension PVA film naturally
produced folds during drying and demolding. One of the most

important advantages of neural networks is that they can
extract important features from complex data sources.
Moreover, as a result of DFT calculation, after being modified
with a hydroxy group, the dye@UiO-66-OH/PVA sensor array
showed a higher sensitivity than bare UiO-66, probably due to
the low binding energy between UiO-66-OH and MA.
Additionally, the limit of detection (LOD) of sensor arrays
was calculated. Dye@UiO-66-OH/PVA showed the lowest
LOD (80 ppm) and shortest equilibrium time (420 s), which

Figure 5. Boxplot of the ED distribution of different dyes based on UiO-66-OH/PVA MOF-MMM for NH3, MA, and TMA at different gas
concentrations (from 40 to 320 ppm, n = 10).

Figure 6. (a) Change in TVB-N content in a chicken breast sample during cold storage. (b) Chicken breast sample with sensor array image
database structure. The database consisted of 4492 images for model training and 1927 for testing labeled with known TVB-N results. (c) DCNN
models used for classification of chicken breast freshness.
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was consistent with the previous results.17 Based on the
performance of the different sensor arrays, dye@UiO-66-OH/
PVA was chosen for all subsequent experiments.
Deep Learning-Enabled Pattern Recognition Using

DCNN. To make a prototype, we employed the newly
constructed sensor array to identify the freshness of chicken.
The chicken was frozen and stored at 4 °C in lunch boxes. The
sensor arrays were photographed using an iPhone 11 max at
various time intervals. According to a prior study, chicken with
a TVB-N level lower than 28 mg/100 g was considered fresh,
while those with a TVB-N value greater than 28 mg/100 g was
declared spoiled and inedible.16 The Conway technique was
used to categorize the sensor array into these two freshness
groups based on the TVB-N value of the chicken. Based on
this criterion, the photographs were then classified as fresh or
spoiled. Figure 6a depicts the general pattern of variations in
TVB-N content throughout a 168 h cold storage period.
The dye@UiO-66-OH/PVA sensor arrays were fastened to

the bottom of lunch boxes without coming into contact with
the chicken samples. Every 24 h, the lunch box was moved out
from the refrigerator and the cap was taken off before taking
pictures in the photo box. To imitate the use of natural light
for taking photos, the lighting conditions in the photo box
were programmed in advance. After the sample was placed in
the picture box, the light source’s temperature and brightness
were automatically modified. Following that, 6419 images of
chicken breast with the sensor array were taken, resulting in a
dataset for chicken freshness rating by machine learning. As
indicated in the approach section, the dataset was first
randomly split into a training subset (70%, or 4492 images)
and a testing subset (30%, or 1927 images) (Figure 6b). The
input, full connection, multiple convolutions, and output layers
of a fresh/spoiled image classification network with distinct
DCNN backbones were built. The trained DCNN extracted
the features from images containing sensor arrays and chicken.
Processed images were thereafter classified as either annotated
0 (fresh) or spoiled 1 (spoiled) (Figure 6c).
The ED value approach was used as a baseline to compare

with the accuracy of deep learning models. Following our
earlier study, we chose 50 sensor array pictures at random from
the fresh and spoiled classes to test the accuracy of ED value
prediction.28 After all was said and done, the ED values had a
prediction accuracy of 64.27%. When considering that this is a
simple binary classification task (fresh/spoiled), this accuracy
means that the method does not accomplish the task of
freshness estimation. Thereafter, four cutting-edge DCNN
models, Inception V3, VGG, Resnet-152, and WISsR-50, were
applied for comparison. WISeR50 achieved the greatest
accuracy for freshness classification, up to 98.95%, which was
34.68% higher than the ED value method. It is worth noting
that this result was obtained while taking into consideration
the extreme light conditions that we performed to interfere
with the sample photographing. The accuracies of the other
three deep learning algorithms are 97.28%, 97.46%, and 92.2%
for VGG16, ResNet50, and Inception V3, respectively, which
are all significantly higher than the baseline (Table 1).
To compare more precisely the performance of the different

models, we plotted confusion matrices (Figure 7). For the four
neural network models, the vast majority of the data was
distributed within the diagonal lattice, which further
corroborated the accuracy of the models calculated in the
previous section. For three of these models (VGG16,
WISeR50, and Inception V3), there were fewer false positives

than false negatives. Considering the potential future
application of the freshness sensor system to ensure food
safety, false negatives are generally considered to be of greater
concern. Here, it is found that the vast majority of trained
neural nets tended to be more conservative in freshness
analysis, thus further demonstrating their advantages. In the
test dataset composed of 1927 photos, only 5 photos of spoiled
chicken were classified as fresh by the WISeR50 model,
accounting for only 0.26%.
Due to their higher accuracy, DCNN models may be

preferable for colorimetric sensor array recognition and
classification applications. Furthermore, there are a plethora
of alternative sensor arrays that might benefit from the DCNN
model while also promising to attain improved accuracy. The
fundamental benefit of this technique is that it maintains a high
level of picture classification accuracy while being simple to set
up an image database. Meanwhile, the system can be applied to
identify the freshness of other foods in the future by changing
the image data set.

■ CONCLUSIONS
A unique MOF-MMM-based sensor array system was prepared
for continuous, real-time, and non-destructive monitoring of
chicken freshness. The system showed greatly improved water
stability and sensitivity attributable to the incorporated UiO-
66-OH NPs. Moreover, it effectively recognized gases emitted
by spoiled chicken including NH3, MA, and TMA and
generated a fingerprint of the above VOCs. A deep learning-
based image classification system was developed. All DCNN
algorithms showed significantly higher accuracy than the ED
value method, with the highest accuracy of 98.95% and lowest
rate of false positive of 0.26% achieved by the WISeR50 model.

Table 1. Accuracy Comparison Results between the ED
Value Method and the Four DCNN Models

model accuracy

Euclidean distance 64.27%
VGG16 97.28%
ResNet50 97.46%
WISeR50 98.95%
Inception V3 92.20%

Figure 7. Confusion matrix of four DCNN models.
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The MOF-MMM-based sensor array approach has great
potential to be embedded in smart packaging materials and
monitor the freshness of food products.
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